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Measurements were made of the ultrasonic shear wave attenuation in superconducting aluminum, using 
99.999% pure single crystals with parallel faces in the [100], the [110], and the [111] directions. It was 
found that the temperature dependence of the attenuation could be separated into two parts: a sharp de
crease in attenuation very close to the transition temperature and a residual attenuation having a tempera
ture dependence similar to that for the longitudinal waves. The method of adiabatic demagnetization was 
used to lower the temperature to 0.3°K, and an extrapolated plot of the residual attenuation in this range 
could be used to determine an effective BCS energy gap. The fraction of the total attenuation represented by 
the residual attenuation was found to be strongly temperature-dependent. Application of a magnetic field was 
found to lower the transition temperature as would be expected. In fact, it was found that the method of 
ultrasonic attenuation could be used to determine the critical fields accurately near the zero-field value, 
where permeability measurements are difficult. A theory was developed to explain the behavior of the shear-
wave attenuation as a function of temperature. The formulation began with approximations which should be 
valid in the London region and employed a self-consistent method for determining the dissipative forces on 
the lattice. Suitable modification extended the theory to cover the entire superconducting temperature 
range. Using the theoretical results, it is possible to determine the parameters r and /, the electron relaxation 
time and mean free path, for one orientation and frequency and then predict the correct results for other 
frequencies at the same orientation. One thus obtains the correct frequency dependence for the total elec
tronic attenuation. Some correlation was made between results for different orientations. 

INTRODUCTION 

FROM the very first observations of ultrasonic 
attenuation in superconductors, it was recognized 

that the decrease in attenuation as a function of 
temperature must in some way reflect the decrease in 
the number of "normal" electrons. However, the 
observed drop is so abrupt that it could not be recon
ciled with any other estimate of the temperature 
dependence of the normal component of a two-fluid 
model. According to the thermodynamic theory of 
Gorter and Casimir, for instance, the density of normal 
electrons is proportional to (T/Tcy, while the observed 
decrease in attenuation seemed to be nearly exponential. 
In 1957 when the Bardeen, Cooper, Schrieffer1 theory 
of superconductivity (designated BCS) was presented, 
the superconducting attenuation for compressional 
waves with propagation vector q5>l~l found an im
mediate explanation. In this case the energy loss can 
be calculated on the basis of electron-phonon scattering 
and the result is 

as/an^2f(e) = 2{exp(e(T)/kT)+l}- (1) 

where e(T) is the temperature-dependent energy gap 
of the BCS theory. Tsuneto2 has shown that for 
impurity-limited scattering the same functional form 
of a«/aw as in Eq. (1) is valid for all wavelengths less 
than those for which hvo^.2e(T). 
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1 J. Bardeen, L. N. Cooper, and T. R. Schrieffer, Phys. Rev. 108, 
1175 (1957). 

2 T. Tsuneto, Phys. Rev. 121, 402 (1961). 

Morse et al.z>4 found that the shear-wave attenuation 
in superconductors could not be fit quite so easily by 
the BCS function 2/(e). In polycrystalline tin at 27.5 
Mc/sec the attenuation was found to drop extremely 
rapidly just below the transition temperature to about 
50% of its initial value. This rapid fall was followed by 
a more gradual decrease on lowering the temperature 
which had the same temperature dependence as the 
compressional attenuation £and hence agreed with the 
BCS function 2/(e)]. The motivation for the work 
reported here was the need for a study of the relative 
size of the discontinuity in aluminum as a possible 
function of direction of propagation, direction of 
polarization, and of ql, where q is the propagation 
vector for the sound wave and / is the electron mean 
free path. 

This observed discontinuous behavior in the shear-
wave attenuation has led many people to assume that 
there are two distinct types of interaction involved. In 
1956 Holstein6 attempted to explain the result in terms 
of the shorting out of roughly that fraction of the 
attenuation which is due to the thermal relaxation 
of the electrons. In a private communication to Morse 
in 1958, Holstein further pointed out that if, in addition 
to a potential Vi which is electromagnetic in origin, 
there is a second potential Vi which depends on the 
local electron and ion configurations, then the latter 
would be unaffected by the appearance of super-

3 R. W. Morse, Progress in Cryogenics (Heywood and Company, 
Ltd., London, England, 1959), Vol. I. 

4 R. W. Morse and H. V. Bohm, J. Acoust. Soc. Am. 31, 1523 
(1959). 

5 T. Holstein, Research Memo 60-94698-3-M17, Westinghouse 
Research Laboratories, Pittsburgh, Pennsylvania, 1956 (un
published). 
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conductivity and would give a contribution to the total 
attenuation which would depend only on the effective 
density of normal electrons. This is similar to the 
suggestion of Morse that perhaps the residual attenua
tion is due to a shear-strain term which arises in a real 
metal because of the complicated Fermi surface. 

Recently, Pippard6 has given a derivation of the 
attenuation in a real metal. In addition to the electro
magnetic forces, he considers the deformations of the 
Fermi surface caused by strain, as well as the force due 
to a relative velocity effect arising when an electron 
travels between regions which move at different speeds. 
Since Pippard's results are quite complicated, a more 
simplified theoretical approach is indicated here. The 
authors were led to consider the electromagnetic 
attenuation close to the transition temperature and to 
make certain reasonable approximations in this region. 
Using a self-consistent dissipative force which includes 
the reaction on the lattice of the momentum exchange 
between the electrons and the impurities, a ql depend
ence was derived for the residual attenuation which 
agrees remarkably well with experiment. 
}| Morse7 has reported on some of the results of this 
study elsewhere. However, the detailed results and 
theoretical calculations herein have not been previously 
published. Some recent work by others on this problem 
will be discussed below. 

EXPERIMENTAL TECHNIQUE 

The attenuation of the ultrasonic wave as it passed 
through the sample was measured by a standard pulse 
technique such as has been discussed in many places.8-11 

The electronic apparatus used in the course of these 
experiments for the purpose of generating and displaying 
ultrasonic pulses was developed by Truell and his 
collaborators at the Metals Research Laboratory at 
Brown University.12 AC-cut quartz transducers with 
fundamental frequencies of 5 and 10 Mc/sec were used 
(supplied by Valpey Crystal Corporation, Holliston, 
Massachusetts). The material used in these experiments 
for making bonds was a high-viscosity (1500 000 
centistoke) Dow Corning silicon fluid. 

Three single crystals of aluminum were used in these 
studies. Most of the measurements were made in a 
crystal grown by the Bridgman method from 99.999% 
pure aluminum. I t was shaped as a right cylinder with 
axis along the [100] direction; another set of parallel 
faces were cut on the sides perpendicular to an equiv-

6 A. B. Pippard, in The Fermi Surface, edited by W. A. Harrison 
and M. B. Webb (John Wiley & Sons Inc., New York, 1960), 
p. 224. 

7 R. W. Morse, IBM J. Res. Develop. 6, 58 (1962). 
8 W. P. Mason and H. J. McSkimin, J. Acoust. Soc. Am. 19, 

469 (1947). 
9 W. P. Mason and H. J. McSkimin, J. Appl. Phys. 19, 940 

(1948). 
i° W. Roth, J. Appl. Phys. 19, 901 (1948). 
11 H. J. McSkimin, J. Acoust. Soc. Am. 28, 484 (1956). 
12 B. B. Chick, G. P. Anderson and R. Truell, J. Acoust. Soc. 

Am. 32?1186_(196Q). 

alent [110J direction. Other measurements were taken 
in a less pure ciystal with £100] faces and in a 99.999% 
pure crystal with C111J faces. 

The low temperatures required for the experiment 
were obtained both by the evaporation of liquid 
helium and by adiabatic demagnetization of a para
magnetic salt. The transition temperature of aluminum 
was measured to be 1.192°K. The lowest temperature 
obtainable by pumping on the vapor phase of the 
liquid helium was 1.120°K. This temperature was 
enough below the transition temperature to allow a 
study of the rapid-fall region of the attenuation, plus 
a part of the temperature region where the attenuation 
falls gradually. However, this information tells nothing 
about the total superconducting fall off of electronic 
attenuation, nor does it tell much about a possible BCS 
energy gap. For these purposes the temperature must 
be reduced to at least 0.3TC. A single shot demagneti
zation system was used to reach this temperature. 

Because the complete system necessary for de
magnetization cooling is rather large and cumbersome, 
and because a great deal of helium is wasted in cooling 
the apparatus, it was decided to design a simple, 
efficient Dewar system for the highly controlled 
measurements close to the transition temperature. 
Thus the entire temperature range was covered in two 
stages with some overlap measurements made on the 
demagnetization runs. The pumping system was capable 
of lowering the vapor pressure of the liquid helium to 
about 300/x. The temperature of the sample in the 
region about the transition temperature was measured 
in two ways. While the system was maintained in 
equilibrium at some temperature by controlling the 
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FIG. 1. A plot of experimental values for the ratios of super
conducting to normal attenuation versus the reduced temperature 
(T/Te). The orientation is [110, 110]. 
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pumping rate, the vapor pressure was read with a 
Stokes portable McLeon gauge with the Flosdorf 
modification. The temperature could be obtained from 
the tables of liquid-helium vapor pressure versus 
temperature which were compiled by J. R. Clement at 
the Naval Research Laboratory, Washington, D. C. 
At the same time that the vapor pressure was read 
the resistance of a Speer carbon resistor was measured 
(this had a room temperature resistance of 470ft). The 
resistance was calibrated as a function of temperature, 
and further resistance measurements were useful for 
accurate measurement of very small temperature 
changes. 

Since it was desired to eliminate the magnetic field 
of the earth at the sample, it was necessary to design 
a pair of Helmholtz coils which could be mounted about 
the Dewars and rotated to the proper angle. In order 
to apply a controlled magnetic field on the sample and 
observe its effect on the transition as seen by the 
attenuation technique, a solenoid was designed which 
could be slipped directly over the nitrogen Dewar and 
held in place by a ring stand. 

SUMMARY OF EXPERIMENTAL RESULTS 

Since Morse and Bohm4 had observed what appeared 
to be a discontinuity in the shear-wave attenuation 
in aluminum at the superconducting transition, the 
first studies undertook to examine this discontinuity 
as a function of such parameters as direction of propa
gation, polarization, frequency, and sample purity. 
The earlier measurements had been with a sample of 
relatively short mean free path. Therefore, the first 
of this series of measurements were made in a Bridgman 
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FIG. 2. A plot of experimental (as/an) versus (T/Tc) 
for the orientation [100, 110]. 

FIG. 3. A plot of experimental (as/an) versus (T/Tc) 
for the orientation [110, 100]. 

[100] crystal grown from aluminum of 99.999% 
purity. It was hoped that this sample might prove to 
have a significantly longer mean free path than the 
one used by Morse and Bohm and that any ql depend
ence of the discontinuity could be determined. 

The first observation was for directions of propagation 
and polarization the same as those of Morse and Bohm. 
It was soon found that there was no discontinuity if 
the magnetic field of the earth were canceled. Although 
there was a rapid fall in attenuation in the temperature 
range close to the transition point, the slope was finite 
and the variation could be followed point by point. 
At a few thousandths of a degree below the transition 
there was a rapid change in slope and the remaining 
change in attenuation with temperature was much more 
gradual. For example, at 25 Mc/sec there was a 
decrease of 5 dB between 1.190 and 1.185°K, but there 
was a decrease of only 2 dB between 1.185 and 1.155°K. 
A summary of such measurements is contained in Figs. 
1 through 3, where the fractional attenuation is plotted 
versus the reduced temperature. (The determination 
of the total attenuation used in making such plots is 
discussed below.) When the attenuation was measured 
without canceling the magnetic field of the earth, the 
transition temperature was shifted downward. Since 
this narrowed the temperature range of the rapid-fall 
region, the change in attenuation necessary to drop 
to the original curve was increased. The net effect was 
to make the change appear more like a discontinuity. 
Nevertheless, the change could still be followed point 
by point if care was taken to allow the sample to come 
to equilibrium with the bath. 
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The most striking difference between these data 
and that obtained by Morse and Bohm (for short ql) 
is the strong frequency dependence of the curves for a 
given propagation and polarization orientation. They 
found very little dependence of as/a?* on frequency for 
the short ql case. In the present case as/an changes from 
0.750 to 0.520 at T/Tc= 0.9700 as the frequency is 
increased from 16 to 46 Mc/sec for the case, where q 
is in the [110] direction and s is in the [100] direction. 
We also find a difference in the frequency variation of 
a8/an for different propagation and polarization 
directions. The frequency dependence seems to be 
strongest in the case for q in the [100] and s in the 
[110] directions, while the dependence seems to be 
weakest for q in the [110] and s in the [110] directions. 
This latter case was the one examined by Morse and 
Bohm. 

A discussion of these data in the light of theoretical 
work is given in a later section and so further discussion 
of these aspects of the data will be deferred to that 
section. 

The dependence of shear-wave attenuation on 
temperature was obtained below 1.1 °K by the adiabatic-
demagnetization technique mentioned above. For each 
orientation of propagation vector and polarization 
several demagnetization runs were made in order to 
increase the density of experimental points. A typical 
plot of the temperature variation of attenuation is given 
in Fig. 4. It is evident from Fig. 4 that the lowest 
temperatures reached for these data were about 0.35°K. 
On some of the runs it was possible to go to slightly 
lower temperatures, the lowest value being 0.29°K. 
The points near Tc in Fig. 4 are from the studies made 
in the smaller cryostat. 

The temperatures determined experimentally below 
1°K were found by extrapolating the susceptibility of 
the paramagnetic salt and by an extrapolation of the 
resistance of the Speer resistor. 

Deviations of the real temperature from the extrapo
lated one can significantly alter the apparent tempera
ture variation of the attenuation. Since this problem 
only arose at the lowest temperatures and because 
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attenuation changes below 0.5°K are small, it is not 
expected that the total decrease in attenuation from 
the normal state should be seriously in error by tem
perature errors. However, if one attempts to compare 
the data with the BCS temperature variation, in
accuracy in temperature compounds a problem which 
is difficult at best. The usual procedure is to make a 
plot of ln(as/an) versus Te/T. Below T=0.STc the 
BCS energy gap is approximately constant and 
the above plot should be a straight line with slope 
— eo(0)/kTe. Inaccuracies in attenuation measurements 
of 0.1 dB become quite significant as T->0 and the 
energy gap is determined by a fitting process. When 
systematic errors in temperature are introduced, it is 
seen at once that the apparent slope will be quite 
different and the empirical energy gap in error. 

Bearing these difficulties in mind we carried out the 
procedure for determining the energy gap. Since it was 
hoped that errors in temperature would be systematic 
and would also be consistent from one run to the next, 
it was felt that any large differences in energy gap 
with direction would show up even though the actual 
values might not be very reliable. The following is a 
table of the results: 

q 
[100] 
[110] 
[110] 

S 

[110] 
[010] 
[110] 

€0 

(1.2=b0.2)j&r, 
(1.7=fc0.2)&T, 
(1.2±0.2)kT. 

Because of the difficulties in absolute measurement 
outlined above, the values of e0 must be regarded as 
only suggestive. It is felt that the probable error of 
zL0.2kT is realistic. 

Steinberg13-14 has demonstrated by two methods that 
if a magnetic field is applied perpendicular to both the 
direction of propagation and the direction of polari
zation of an ultrasonic shear wave in a metal with 
ql<£l the attenuation should decrease with increasing 
field strength according to 

a(H)/a(0)={l+(2ccryy (2) 

where <ac-=eE/ni*c is the cyclotron frequency. Thus, 
an estimate of the total electronic attenuation could be 
obtained by fitting the experimental variation of 
attenuation versus magnetic field strength. A com
parison of the results for the total electronic attenuation 
obtained from the magnetic data with those from the 
superconducting data shows that they are consistent 
within about 3%. In each case the value from the 
magnetic variation was larger than that from the 
superconducting variation. This fact is interpreted to 
stem from a systematic error in the temperature 
calibration as discussed above. In later analysis, the 
values used for the total electronic attenuation will 
be those obtained from the magnetic data. Their close 

FIG. 4. A plot of experimental (as/an) versus (T/Tc) 
over the total range for the orientation [100, 010]. 

13 M. S. Steinberg, Phys. Rev. 110, 772 (1958). 
14 M. S. Steinberg, Phys. Rev. I l l , 425 (1958). 



U L T R A S O N I C S H E A R W A V E S IN S U P E R C O N D U C T I N G Al A897 

agreement with the temperature data suggests that 
errors would not be more than a few percent and so 
would not change significantly the results of the analysis 
which will follow. 

The transition temperature, as viewed by ultrasonic 
attenuation, is shifted to lower values when a magnetic 
field is applied. This effect should reflect the usual 
dependence on temperature of the critical field,15 i.e., 

Hc(T) = Hotl~(T/Tcyi, (3) 

where H0 is the critical field at absolute zero. In Fig. 5 
the current in the solenoid (described in Sec. 1) is 
plotted versus the square of the observed transition 
temperature for q in the [110] direction, s in the [100] 
direction, and H parallel to q. The magnetic field was 
linear in the current and for the current range from 
0.1 to 1.0 A the observed field agreed with the calculated 
value of 13.9 G/A. Assuming Eq. (3) to be valid, the 
extrapolated value of Hc is 114 G. Chanin and Caplan16 

have recently studied the temperature dependence of 
the critical field in aluminum in the temperature range 
0.28°K to a measured transition temperature of 
1.175±0.001°K. The extrapolated critical field at 
absolute zero was 104.0±0.5 G. While it is not sur
prising that the extrapolation of the parabolic tempera
ture dependence from the small field limit gives a 
different result, refinements on the use of the ultra
sonic technique might result in an improved method for 
studying the critical field near Tc. Cochran et al.11 

measured the temperature dependence of Hc and found 
a Tc of 1.196°K and extrapolated a zero temperature 
of Hc of 99=hl G. The measured values of Tc in the 
ultrasonic experiments ranged from 1.187 to 1.192°K, 
lying between the values of Tc quoted above. It should 
be emphasized that the measurement of small changes 
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FIG. 5. A plot of critical field versus the square of the 
transition temperature for [110, 100]. 

15 F. London, Super fluids (Dover Publications, Inc., New York, 
1961), Vol. I. 

16 G. Chanin and S. Caplan, Bull. Am. Phys. Soc. 9, 30 (1964). 
17 J. F. Cochran and D. E. Mapother, Phys. Rev. I l l , 132 

(1958). 

in temperature by means of the resistance thermometer 
are much more accurate than the absolute determination 
of Tc. It is estimated that the values of T/Tc plotted in 
Figs. 1, 2, and 3 are accurate to ±0.0002. 

ATTENUATION IN THE NORMAL STATE 

Before attempting a theoretical explanation of the 
experimental results discussed above, it will be necessary 
to consider the methods for calculating the ultrasonic 
attenuation in both normal and superconducting metals. 
The usual procedure is to start with the Boltzmann 
transport equation and solve for the distribution 
function / in configuration space in the presence of a 
plane sound wave with propagation vector q and 
frequency co. The collision drag mechanism causes the 
electrons to relax to a Fermi distribution centered 
about a local lattice velocity (see Holstein5). A velocity 
and coordinate independent relaxation time is assumed 
for simplicity. At this point the electron current can be 
calculated in terms of local fields, £, from the integral 
relation 

(4) j«=—e/ v ^ v , 

where v is the electron velocity, <p= /—/o, and /o is the 
equilibrium electron distribution. An additional relation 
between current and fields is obtained from Maxwell's 
equations and the condition of quasineutrality (see 
Bardeen18). Both j e and £ are uniquely determined in 
terms of the fundamental parameters of the electron 
distribution and the sound field. In the case of normal 
metals and compressional waves in superconductors 
the reaction of the collision drag mechanism on the 
lattice, through the strong coupling of the scattering 
centers to the lattice, is found to be a negligible effect 
in calculating the attenuation. In this case the at
tenuation a is just the ratio of the dissipated power, 
| Re(je*- 8) to the product of the energy density of 
the sound field and the sound velocity. The normal 
metal, electronic attenuation for a compressional wave 

is 
Nm2~ 

aL=-
CalpT 3 

• tan"1^/) 

. (gO-tan- 1^) H (5) 

and a shear wave is 

CLT 

where 

Nm2~lrl-g(ql)-l 

Cs2pT L g(ql) J 
(6) 

2(qlY 

I is the electron mean free path, Nm is the electron 
mass density, p is the lattice mass density, csi and cs2 

are the respective sound velocities, and r is the relaxa-

18 J. Bardeen, Phys. Rev. 52, 688 (1937). 
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tion time. These results are in agreement with the 
one-electron calculation of Pippard.19 

ATTENUATION IN THE SUPERCONDUCTING STATE 

The first observations of the superconducting state 
showed that it is unique in its electrical and magnetic 
properties. I t was found that the dc resistance20 within 
a superconductor is zero and that the magnetic flux21 

is zero. In order to account for the electromagnetic 
properties London et at.22 proposed a phenomenological 
theory in which it was postulated that the super
conductor contained two types of electrons. There 
would be a density of superconducting electrons which 
would satisfy 

E=A(dh/dt) (7) 

with A^ni/Ne2, to account for zero resistance, and 

curlAjs= - ( l /c)H (8) 

to account for the exclusion of the magnetic field. The 
normal electrons were assumed to have a Fermi energy 
distribution and obey the Maxwell equations as in the 
normal metal. In order to explain penetration phe
nomena, Pippard23 proposed a nonlocal modification 
to the London equations in which the fields are effective 
over a coherence distance. There is a limiting case of 
the BCS theory in which the London equations are 
valid; however, in general the energy-gap formulation 
leads to a Pippard type coherence. 

If the electron mean free path is sufficiently long 
(qly>\), then the compressional wave attenuation can 
be found by considering electron-phonon collisions. The 
result is that given in Eq. (1). To calculate the attenua
tion in an ideal metal for both compressional and shear 
waves with arbitrary mean free path, it is necessary to 
go to a density-matrix formulation. Bardeen and 
Mattis24 used such a procedure to calculate the complex 
conductivity of a transverse electromagnetic field in a 
superconductor with scattering centers present. Tsuneto2 

calculated the conductivities for both longitudinal and 
transverse fields taking into account the fact that the 
scattering centers move with the lattice and the elec
trons are dragged along. For the longitudinal case with 
^oj<<Ce(r), but / arbitrary, Tsuneto found that when 
the scattering is impurity limited, the ratio of super
conducting to normal attenuation for arbitrary mean 
free path is 2/(e) just as in the limit of qly>\. 

Exact expressions for the transverse attenuation were 
found by Tsuneto in two limiting cases: hco<2eo(T) 
<gfoqVo; and hqVo«.eo(T) with 1= <x>. In both instances 
the attenuation is predicted to fall rapidly to zero near 

19 A. B. Pippard, Phil. Mag. 46, 1104 (1955). 
20 H. K. Onnes, Comm. Phys. Lab. Univ. Leiden, Nos. 119, 

120, 122 (unpublished). 
21 W. Meissner and R. Ochenfeld, Naturwiss. 21, 787 (1933). 
22 H. London and F. London, Proc. Roy. Soc. (London) A149, 

71 (1935). 
23 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953). 
24 J. Bardeen and C. D. Mattis, Phys. Rev. I l l , 412 (1958). 

the transition temperature. I t should be emphasized 
that Tsuneto specifically notes that his expressions for 
the attenuation are derived by neglecting any dissi
pation arising from the collision-drag effect. In other 
words, the fact that there is a momentum change in 
the impurity system when the electrons are scattered 
preferentially has been neglected. In a later section 
it will be shown that the inclusion of collision drag is 
essential for the treatment of a shear wave in a super
conductor, although it is of no importance for longi
tudinal waves. 

THEORY OF SHEAR-WAVE ATTENUATION NEAR Te 

Even though we have seen that an approach using 
the Boltzmann transport equation is not fruitful for an 
exact solution of the attenuation in a superconductor, 
let us now consider what approximations to this treat
ment might be useful in a temperature range close to 
Tc* The importance of this region is suggested by the 
experimental fact that the rapid-fall region for trans
verse waves occurs within a relative temperature change 
AT/TC of about 0.005. Since the ratio of the energy 
gap to kTc is, to first order in AT/TC, 

€0(0) rAT-f* 

we see that the energy gap is only about (0.2)kT when 
the rapid-fall portion of the attenuation is taken out. 

For electromagnetic radiation on a superconductor 
the London region corresponds to approximately the 
same temperature range. For transverse sound waves 
in a superconductor a reasonable assumption for the 
criterion for the validity of the London equation would 
be ^^q"1, where £0 is the coherence length. This 
condition is approximately realized for the frequencies 
considered here. I t is interesting to note the results 
obtained using the Boltzmann transport equation and 
assuming the London two-fluid model suitably modified 
by the BCS theory. 

Consequently, we shall follow the procedure of 
Holstein5 in the London region, i.e.: 

(1) Derive expressions for the longitudinal and 
transverse normal currents. 

(2) Use the London equations to derive the super-
currents. 

(3) Set up the dissipative force in terms not only of 
the irreversible scattering of the electrons, but also of 
the reaction of the scattering centers to electron-
impurity collisions. 

(4) Find that one is led to the prediction as/an 

— g[2f(e)~] at temperatures for which the fields are 
effectively screened by the superconducting currents, 
where g=g(ql) is the function defined in Eq. (6). 

The following is a list of the specific assumptions 
to be made initially: Rather than use the density 
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matrix formulation, we shall follow an approach similar 
to the Boltzmann transport equation. Instead of using 
the excitation distribution function, we shall assume 
a Fermi distribution for normal electrons to be centered 
about the local lattice velocity. Rather than use the 
temperature and energy dependent relaxation time 
for excitations, 

r ' = r — — , (10) 

we shall assume the constant impurity scattering 
relaxation time for normal electrons r. Finally, rather 
than use the complete BCS equation for the super
conducting currents, we shall assume that we are 
dealing with the London region. 

The differential equation which will be used for the 
distribution function is simply that which was solved 
above for normal metals with the single modification 
that the density of electrons is now Nn, the density of 
normal electrons. The normal current is again obtained 
from Eq. (4). 

In order to motivate our treatment of the attenuation 
in the superconducting state, let us consider the forces 
acting on the lattice. The sum of the real parts of these 
forces constitutes the dissipative force which gives rise 
to the attenuation. The contribution of the local 
electric field to the force density is equal to the force, 
eg, acting on each ion multiplied by the ion density, 
N;i.e., 

T^NeS. (11) 

Fi is the reaction on the lattice system to the time rate 
of change of electromagnetic momentum. Obviously, 
this is just the Lorentz force on the normal electrons. 
I t follows that the real part of Nne£> is the dissipative 
force on the lattice arising from the irreversible scatter
ing of the electrons as they are dragged along with the 
local lattice current. I t is obvious that the attenuation 
derived from this force alone is identical to that found 
by considering the energy dissipation term (j*« £) 
mentioned previously. There is, however, an additional 
force on the lattice which must be included in the 
interest of self-consistency. The collision-drag assump
tion required that the electrons be scattered into a 
Fermi distribution centered about the local lattice 
velocity. Considering for the moment only impurity 
scattering, we see that as the electrons are given a 
change in mechanical momentum (d/dt)(Nnmv) the 
impurities suffer an equal but opposite change. Now 
due to the strong coupling between the lattice and 
impurity systems, this change in momentum should be 
included in the enumeration of forces on the lattice. 
If the electrons followed the lattice exactly their 
momentum at any time t would be Nnmu. Actually 
they are scattered from the momentum 

toward Nmu with the relaxation time r. (Note that 
u and ]n are both either longitudinal or transverse 
simultaneously.) Thus the average change in momentum 
per unit time evaluated at time t is 

T-1[Nnnm+(m/e)]n~]. (12) 

As a result the reaction experienced by the lattice is 

V2=-(m/eT)Un+Nneif\. (13) 

The total force includes the electrical force and is 

Frf= F i + F 2 = t f e £ + (tn/er)(-u-Nneu). (14) 

At this point it is convenient to show how one obtains 
the attenuation from the dissipative force. Below we 
show that 

Re(Fd) = — U'[K(m,fl0,r,co,cs)] > (15) 

where K is a function of the basic parameters of the 
problem, i.e., the electronic parameters, and the 
frequency and velocity of the sound wave. The equation 
for an acoustic wave in a medium with a dissipative 
force is 

d2St dS[ Fd 

=c.f—+-, (16) 
dt2 <9f2 p 

where S$ is the amplitude of the acoustic wave, and the 
f is the direction of the displacement. From the plane-
wave approximation 

-co 2 S r = -CstSt- (k/p) ( -&>)S r , (17) 

therefore, k2=ko2—ikoK/csp, where ko—co/cs. The 
amplitude attenuation is given by the imaginary part 
of k. By the very nature of the problem, the dispersive 
term is small in magnitude compared to ko. Thus to 
first order in l(koK/csp), the energy attenuation, which 
is twice the amplitude attenuation, is 

a=K/csp. (18) 

We now can write the attenuation given the reactive 
force on the lattice. 

In view of the assumptions stated earlier, the total 
current J at any point in the crystal will be given by 
the sum of the lattice current Neu, the normal electron 
currents + j n and the superconducting current + j s . 
Using the knowledge of ]n and j s , along with Maxwell's 
equations, we shall show that it is possible to arrive 
at two equations in the variables £$• and jWff for both 
compressional and shear displacements. Thus, our 
procedure will be to solve for 8 f in terms of the basic 
parameters and then determine as. 

We shall now specify the indices "f" and separate the 
two modes of vibration. Consider again a wave propa
gated along the x axis such that the time and space 
variation is ei(Jcx~ut\ and take the y direction to be the 
direction of the transverse vibrations of the ions. We 
have exactly the same reduced Maxwell's equations 
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that we found in the section on Attenuation in the 
Normal State. From the London equations 

and 

Jsy — 

Jsx~ ' 

Nse
2Sy 

ioom 

Nse
2Sx 

icom 

(19) 

(20) 

Let us consider the attenuation of a transverse wave, 
where u=uvy. In this case 

<§* 
4ire/ ca\T 

CO \ C 1 L 

N8e
28v 

NeUy—Nneg (uy—e Syr/m) -
C / L IOOM 

and 

Jny 1V n 
( eSyr\ 

Ally 1. 
\ m / 

(21) 

(22) 

Let us drop the y subscripts for the moment. Then 
solving for NneS we find 

NneS=-
Nmu 

T 

fN« Ns 1 
X — g 

L N N iwy 

/ c \ 2 com "T1 

• ( - ) • (23) 
\cs/ 4Tre2rNiJ 

The term 

©' 4:ire2rAri 

has been estimated in the discussions of the shear 
wave attenuation in a normal metal.5 We now see that 
the condition of quasineutrality for transverse vibrations 
of the ions remains valid in the superconducting state 
with the same limits on frequency, i.e., / < 109 sec"1 

and so the same approximation can be made. Thus we 
get: 

NnWlUr /Nn\ 
Nne8=-

NrWUr /Nn\ 1 

WN/ \ N )io>T J 

N.\ 1 T 1 

The force F% can be written 

and so 

•-NneS\ 

— Nnglu—e—) 
r L \ ml 

f Nn\ Nn \ Num\ 

— NnU > 

VNn Nn~\ 

IN& N J 

(24) 

(25) 
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FIG. 6. The function g(ql) versus ql. 

Finally 

Fd 

and 

Num\ 

N 

X 

R e ( F d ) = -

IN-
/Nn\ Ns 1 I " 1 /Nn\] 

(T>-*«MJ +(1-S)U\ (2!) 

s l(i-iA NV\. 
Num (1 
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\N/ \NJ (cor2? J V i V / J 

Consequently we find that the relative attenuation is 
given by 

x 
r / A ^ y / i ^A 2 i i - 1 

+ \NJ (cor)2J \Ar 

where we have used the fact that 

Nm (1-g) 

2cspr g 

Nn\ 
(29) 

(30) 

For the temperature variation of the density of 
normal electrons close to the transition temperature 
we shall consider first that predicted by the BCS theory 
for the "London region," i.e.,25 

Ns 

N 

Nn I 
1-—c^2 

N \ 

'Tc-T-

• Tc J 
(31) 

The function g(ql) is a monotonic decreasing function 
of ql over the domain (0,+ oo) with range ( + l > g > 0 ) 
as shown in Fig. 6. Therefore, 0<gNn/N<l. The term 

25 L. M. Khalatnikov and A. A. Abrikosov, Advances in 
Physics (Taylor & Francis, Ltd., London, 1959), Vol. 8, p. 45. 
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Z(NS/N)(OOT)~1']2 will dominate the denominator when 
Ns/N becomes somewhat larger than COT. The angular 
frequency co is about 108 rad/sec for the experimental 
case, and r is expected to be on the order of 10~n sec; 
thus o>r~10-3. If Ns/Nc^.l0-2, the first term of as/an is 
greatly reduced. This would occur for 2(TC—T)/TC 

~10~ 2 or T/Tc=0.9950. A plot of the reduced attenua
tion versus temperature (Fig. 7) shows that in a very 
small increment in T/Tc the first term becomes in
significant compared to g(Nn/N). We notice now that 
this quite simple approach with the inclusion of the 
collision-drag term has qualitatively reproduced the 
essential feature of our experimental data. Just below 
the transition temperature there is a region in which 
the attenuation drops quite rapidly down to some 
fraction of the normal-state value. Further decreasing 
of the temperature causes a much more gradual decrease 
in attenuation. We see also that the residual attenua
tion, or that fraction remaining after the rapid decrease, 
has a frequency dependence which is predominantly 
determined by the factor g(ql). This behavior is 
consistent with the experimental work where it was 
noticed that increasing the frequency tended to decrease 
the residual attenuation. 

As pointed out earlier, the correct expression for the 
attenuation of a longitudinal wave in a BCS super
conductor is as/an=2f(eo) no matter what ql. Com
paring this fact with the result from the approximate 
treatment given above, it seems that 2f(e) represents 
the temperature variation of the "normal" electron 
density of a superconductor insofar as ultrasonic 
attenuation is concerned. The experimental evidence 
cited for shear-wave attenuation in superconducting 
tin and the present work in aluminum both seem to 
indicate that the residual attenuation is proportional 
to the function 2/(e). If a plot is made of ln(as/an) 
versus Tc/T a limiting value of e 0 ( r = 0 ) can be deter
mined. If, in addition, a plot of ln[2/(e)[] is made using 
the BCS prediction for the temperature variation of 
e(T), it can be seen that the curve for the shear-wave 
attenuation lies below that for the BCS function by a 
constant amount, except for the region very close to 
the transition. According to our theory this constant 
should be lng. On the basis of the experimental obser
vations and the equivalence of the terms Nn/N and 
2/(e) for longitudinal attenuation, we are led to make a 
plausible modification to the theory by substituting 
2/(e) for Nn/N in Eq. (29). This leads to the result 

as J ( l - g ) - 1 ( l - 2 / ( e ) g ) 2 ( 2 / ( e ) ) ^ 

a~ 1 [ 2 / ( e ) d « + (l/g)L(N8/N) (1/cor)]2" 
~2gf(e) 

(32) 

The preceding modification has been chosen em
pirically and by analogy with the longitudinal wave. 
Theoretically, we expect some modification of the 
normal electron density from the simple two-fluid 
model because the distribution of excitations is not a 
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FIG. 7. A plot of functions associated with 
the approximate theory. 

simple Fermi function and because the electromagnetic 
interaction is modified in the superconductor. In the 
London region of a BCS superconductor the form of the 
superconducting currents should not have to be modified 
from the London equations provided that the BCS 
prediction of Ns/N is used [i.e., in Eq. (32) we do not 
substitute 1 —2/(e) for N8/N~]. In general the tempera
ture range in which the London equations are valid 
varies from metal to metal. However, the range is 
limited on the higher temperature side by fico<^eo(T) 
and on the lower temperature side by eo(T)<gikT.25 

Thus, for a metal in which this range coincides with 
the lower part of the rapid-fall region, Eq. (32) might 
be expected to be a good representation of the actual 
situation, and the width of the rapid-fall region should 
give a measure cor. 

Recently Levy26 has given a calculation of the shear-
wave attenuation in a superconductor for the limit 
ql<<Cl or g ^ l . He found that the collision-drag effect 
leads to an attenuation as^=an[_2f{e)~]. Combining this 
result with the above calculation leads to a completely 
theoretical justification for the form of Eq. (32). 

We shall now proceed to a more detailed comparison 
of Eq. (32) with the experimental results for aluminum. 

COMPARISON OF DATA WITH THEORY 

The principal results of the last section which we 
shall use in an analysis of the experimental data are 
as follows: 

(1) The width of the rapidly falling portion of the 
shear-wave attenuation is determined by the parameter 

26 M. Levy, Phys. Rev. 131, 1497 (1963). 
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fixed r and ô but different frequencies. 

(2) The residual attenuation has a ql dependence 
given by g(ql). 

(3) It has been inferred from data in other metals 
that after the initial rapid fall the temperature variation 
is the same as the BCS prediction, so well shall assume 
that the residual attenuation is given by g[2f(e)~]-

The first two points will be used to determine whether 
or not the results are mutually consistent, and the third 
point will be checked insofar as possible. 

In interpreting the data one needs to have some 
knowledge of the relationship between r and /. In the 
case of thermal scattering, for want of a better assump
tion, an isotropic r often is assumed. Since 

^ ( T 1 , (33) 

the assumption gives / the directional dependence of the 
Fermi velocity. In the case at hand, however, we are 
dealing with impurity limited scattering in a single 
crystal. For such a situation Wilson27 has derived an 
expression for r as a limiting case of the relaxation time 
in an alloy. The result is 

= C(2/»*)£/]»^(r) (34) 

which can be written in exactly the same form as 
Eq. (33). Here r is not necessarily isotropic since /(r) 
and v0(r) do not necessarily have the same directional 
dependence. Admittedly there will be no difference in 
the fitting of the experimental curves as to which of the 
above attitudes is adopted since Eqs. (33) and (34) 
are formally identical. However, it does simplify the 
discussion for us to make our analysis using the second 
viewpoint. 

27 A. H. Wilson, The Theory of Metals (Cambridge University 
Press, Cambridge, England, 1953), 2nd ed. 

Before a detailed analysis of the data let us review 
exactly the theoretical predictions for the behavior 
of a8/an as a function of frequency and the electron-
lattice parameters. Figure 8 summarized these for 
certain cases which reasonably could be expected to 
occur. The quantities ql and cor are fixed by any 
combination of three parameters such as co, l/c8, and r ; 
or co, l/csy and l/z>o; or, perhaps, co, (vo/cs), and r. The 
last combination was used in stipulating the conditions 
for each calculation. Fixing cs at 3 X105 cm/sec, v0 was 
allowed to assume the values 0.5X108 cm/sec, 3X108 

cm/sec and 7X108 cm/sec; r was varied through the 
three orders of magnitude 3X10~12 sec, 3X10~n sec, 
and 3X10-10 sec. The frequency was varied from 15 
to 150 Mc/sec in steps of 15 Mc/sec. All of the results 
shown in Fig. 8 are for €o(0)=1.76&rc, the standard 
BCS value. Different energy gaps give results which 
differ only in that the curves will lie uniformly above 
or below those for the standard gap. 

The results can be summarized as follows: The effect 
of increasing the frequency is simply to decrease the 
residual attenuation. The effects of increasing r are 
twofold: The width of the rapidly falling region is 
increased; and because of the fact that ql can be 
written as (VO/CS)OOT, g decreases with increasing r 
and with it the residual attenuation. The effect of 
increasing VQ is to decrease the residual attenuation 
because it gives a larger ql. 

Let us now compare the calculations with experiment. 
The first step is to select a particular direction of 
propagation and polarization and fit one frequency 
curve, obtaining g and cor. Using the fact that ql—oo/cs, 
we should then be able to predict what g should be for 
each of the other frequencies in that particular family 
of curves. Note that at temperatures sufficiently far 

.uuu 

.900 

.800 

.700 

.600 

.500 

.400 

.300 

1 1 1 1 • 

q->[ l00] / 
S-* [ |00] / 

/ 
• ! 

^ 1 
1I.5MC/SEC J 

y i 
25.0 Mc/SEC >^ 

^ 1 
36.0 Mc/SEC 

f i l l 
.950 .960 .970 .980 .990 1.000 

X 
Tc 
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Mc/sec and the other g's were predicted. 
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below the transition temperature the attenuation is 
just g[2f(e)2* Thus the lower part of the curves can 
be matched by finding the combination of g and 
[2/(e)J which will correctly fit the other curves in the 
family at a given temperature. I t might seem at first 
glance that two adjustable functions such as g and 
[2 / (e ) ] would allow many combinations to give 
reasonable agreement with the data. However, we shall 
see that there is a unique [2 / (e ) ] and only one (v0/cs) 
which will fit each family of curves. Furthermore, we 
shall see that the results for different orientations are 
quite consistent. 

Consider the case [100, 110], where the notation 
implies that the propagation is in the [100] direction 
and the polarization is in the [110] direction. We shall 
take the 25 Mc/sec curve and assume that T/Tc 

= 0.9750 is sufficiently low so that a8/an=g[2f(e)2. 
Let us first take [2 / (e ) ] to be that for which the energy 
gap e(0)=1.2&rc is that obtained from the total 
superconducting fall-off data. In this case 2/(e) = 0.850 
for T/Te= 0.9750. Using this value we find g(25) = 0.529. 
This would predict that g(15) = 0.770 and g(35) = 0.410, 
The notation g(15), a(15), etc., means that the quantity 
applies to the frequency (in Mc/sec) shown in the 
parentheses. These curves along with the experimental 
points are plotted in Fig. 9. I t can be seen that the 
agreement is quite good. In view of the uncertainty of 
e(0) from our measurements we will consider this 
selection for [2 / (e ) ] to be partly good luck. 

Having now made a determination of the parameter 
g only from the residual attenuation viewpoint, one 
could argue reasonably that there are many functions 
of ql which would give approximately the same results 
in this range. Recall, however, that g also occurs in the 
total attenuation. Consequently, it would be reassuring 
if we could show that the g values derived above are 

precisely those which give the correct frequency 
dependence of the total attenuation. We can write 

«=KL(l-g)/gl, (35) 

where K is independent of the frequency. This means 
that if we solve for K in terms of a(15) and g(15), we 
can predict a(25) and a(35). The results compare with 
the observed values as follows: 

a predicted a observed Error 

a (25) 
a (35) 

17.6 dB/cm 
28.3 dB/cm 

17.8 dB/cm 
28.0 dB/cm 

- 1 . 1 % 
+ 1.1% 

This agreement seems to indicate that the g values are 
quite precisely determined. 

Since all the empirical fittings of g seemed to be 
consistent for both the residual attenuation and the 
total fall-off, we were led to derive a relation which 
makes finding g from the data a great deal easier and 
which makes no assumptions about [2 / (e ) ] except that 
it is frequency independent. For two frequencies in the 
same family we can write 

ai = i£( l - -gi ) /g i ; a2=K(l-g2)/g2. (36) 

Let a=a i / a2 and g2=xgi- Since at any sufficiently low 
temperature [ (« /«» ) i ] / [ ( a , / a» ) 2 ]= (gi/gi)> 

x=-
it follows that 

(as/an)i 

(as/(Xn)2 

X-a 

(37) 

(38) 

Using Eq. (49) we see that there is a unique gap such 
that 2/(e) fits the experimental family of curves. 
Curves predicted from Eq. (38) for [110, 100] are com
pared with data in Fig. 10 as indicated by the solid 
curves. The [2 / (e) ] value was found from the 25 
Mc/sec curve. 

Thus far we have been concerned with a family of 
curves for a single orientation at a time. If we could fit 
one member of a family and then predict not only the 

TABLE I. Electronic and ultrasonic parameters 
estimated from data. 

q 

[110] 

[100] 

S 

[010] 

[010] 

0) 

(Mc/sec 

16.5 
27.5 
35.9 
46.5 

11.5 
25.0 
36.0 

) q 

1.03 
1.71 
2.23 
2.89 

1.38 
3.00 
4.32 

g 

0.850 
0.712 
0.610 
0.540 

0.770 
0.529 
0.410 

/ 
X10+3 

(cm) 

3.88 

6.50 

r 
X10+11 

(sec) 

2.8 

7.0 

Vo 
X10~8 

(cm/sec) 

1.38 

0.93 

[110] [110] 15.0 0.71 0.917 2.56 
25.5 1.18 0.818 
35.0 1.70 0.715 

2.0 1.28 
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other members of that particular family but also the 
g values for the other orientations, it would greatly 
strengthen the belief that g(ql) gives the correct ql 
dependence. There is one possibility for carrying out 
such a calculation. Steinberg's attenuation variation 
depends on the cyclotron frequency for an electron 
orbit in the plane defined by the propagation and 
polarization directions. The product of the cyclotron 
frequency and the relaxation time is 

/ eH\l el 
cocr= ) - = II. (39) 

\?n*c/Vo (?n*Vo)c 
Let 

4—l-
Ltn*VocJ 

If the mean free path were a function of direction in 
the crystal rather than just energy, the collision-drag 
mechanism suggests that the relevant mean free path 
would be the one in the direction of polarization. Hence, 
if the m*flo's of the electrons participating in the shear 
interaction for two orientations were precisely known, 
then the ratio of the mean free paths in the two different 
directions could be found from the ratio of b's. In fact, 
for a spherical Fermi distribution 

bi/b2=li/h. (40) 

The actual Fermi surface in aluminum has been 
worked out in great detail by Heine28 and Harrison29 

using a free electron model and then suitably modifying 
it to fit the results of the de Haas-van Alphen effect, 
cyclotron resonance and the anomalous skin effect. 
Roberts30 has studied the surface further using the 
magnetoacoustic technique mentioned in the introduc
tion. The results seem to indicate that the first zone is 
filled, the second zone has pockets of holes, and the 
third and fourth zones contain pockets of electrons. 
The shapes of these Fermi surface sheets are fairly 
well known. 

However, at the present time it is not known exactly 
what group of electrons participates in the shear 
interaction, and so no exact statement can be made 
regarding the nt*v0 in Eq. (39). However, for small 
enough q one would expect that variations in tn*vo 
will represent an average over the surface. If this is the 
case, then we should be able to calculate ql in any 
direction once all b's are determined and ql is known 
for one orientation. I t is realized that these assumptions 
must be highly doubtful, but it is interesting to note 
the results given below. 

Taking the value of the mean free path for the 
orientation £100, 110] (/=6.5X10~3 cm), the mean free 
path for [110, 100] was calculated from Eq. (51) 
(/=4.0X10~~3 cm) and the resulting values of g(ql) for 
the frequencies of the rapid-fall data were determined. 

28 V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957). 
29 W. A. Harrison, G. E. Research Laboratory, Schenectady, 

New York (unpublished). 
30 B. W. Roberts, Phys. Rev. 119, 1889 (1960). 

The ensuing theoretical curves for the superconducting 
attenuation are plotted in Fig. 10. I t can be seen that 
the results are within a few percent of the values found 
by fitting the [110, 100] data. 

The energy gap which would lead to a particular 
2f(e) at a given temperature can be found easily in 
the range close to Tc. Assuming e(T)<£jzT and using 
the e(T) approximation for first order in AT/TC, we 
can show that 

e(0) 1.16 T 
= - { P / M ] - 1 - ! } . (41) 

For example, if (T/Te) = 0.9750 and 2/(e) = 0.850, then 
€(0)=1.25&JHC . That this is correct can be verified by 
substitution into the exact equation for 2/(e). 

Thus far we have had nothing to say concerning the 
parameter cor in the region of rapid fall. We have used 
the London equations in order to determine the density 
of electrons or pairs which act to form the super
conducting currents. For most metals the London 
region should occur in the temperature range which 
would coincide with the lower end of the region of 
rapid fall, and, hence, the London density as estimated 
from the BCS theory should give a rough estimate of 
the actual cor. As we have discussed in the last section, 
when (NS/N)>O)T the electric fields are reduced to a 
negligible value and the first term of Eq. (32) becomes 
negligible. In actual practice the data in the region of 
rapid fall are not sufficiently accurate to allow more 
than a rough estimate for cor. Bearing this fact in mind, 
attempts were made to determine r. For example, using 
the 45 Mc/sec data of the [110, 100] orientation it was 
found that cor=cor=6.4X10~3, giving a r of 2X10"11, 
which is not an unreasonable value (see Table I for a 
summary of evaluated parameters). The estimation of v0 

from ql and cor can be accomplished as: 

qlcs 
v0=—=1.38X108 cm sec"1, 

cor 

where we have used the measured value of cs for this 
orientation (c s=3.92X105 cm/sec). David et al.n have 
recently made shear wave attenuation measurements 
in aluminum at somewhat larger values of ql. They 
found a systematic deviation from the predicted 
residual attenuation according to the simplified theory. 
In fact the difference between the measured and pre
dicted residual attenuation was found to be a mono-
tonically increasing function of ql. One possible source 
of this deviation is the shear-wave deformation potential 
suggested by Pippard on the basis of the actual compli
cated electronic structure in real metals. Such a 
deformation potential would be expected to lead to a 
contribution to the residual attenuation which increases 
monotonically as a function of ql. 

31R. David, H. R. Van Der Laan, and N. J. Poulis, Physica 
29, 357 (1963). 
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One suggestion which is obvious from this considera
tion is to attempt a measurement of the shear-wave 
deformation by taking the difference between the 
experimental and predicted residual attenuation at 
large ql values. 

CONCLUSION 

This article reports and interprets experiments which 
were conducted to determine the temperature depend
ence of shear-wave attenuation in superconducting 
aluminum. Some of the main results are: 

(1) In contrast to the longitudinal-wave attenuation, 
the experiments showed a strong frequency dependence 
of the reduced attenuation (as/an) as a function of 
temperature. 

(2) The temperature variation of (as/an) could be 
separated into two parts: 

(a) a very sharp decrease with temperature very 
close to the transition temperature and 

I. INTRODUCTION 

IN recent years, several authors1-17 have written on 
the structure of the asymptotic three-body collision 

term in a modified Boltzmann equation appropriate to 

1 N . N. Bogolyubov, "Problems of a Dynamical Theory in 
Statistical Physics," translation by E. K. Gora from Studies in 
Statistical Mechanics, edited by J. deBoer and G. E. Uhlenbeck 
(North-Holland Publishing Company, Amsterdam, 1962), Vol. I. 

2 M. S. Green, J. Chem. Phys. 25, 836 (1956). 
3 M. S. Green, unpublished letter to G. E. Uhlenbeck. 
4 M . S. Green, Physica 24, 393 (1958). 
6 S. T. Choh and G. E. Uhlenbeck, thesis, University of 

Michigan, 1958 (unpublished). 
6 R. M. Lewis, J. Math. Phys. 2, 222 (1961). 
7 S. Rice, J. Kirkwood, and R. Harris, Physica 27, 717 (1961). 
8 E. G. D. Cohen, Physica 28, 1025, 1045, 1060 (1962). 
9 E. G. D. Cohen, Fundamental Problems in Statistical Mechanics 

(North-Holland Publishing Company, Amsterdam, 1960). 
10 M. S. Green and R. A. Piccirelli, Phys. Rev. 132. 1388 (1963). 
11 P. Resibois, J. Math. Phys. 4, 166 (1963). 
12 E. G. D. Cohen, J. Math. Phys. 4, 183 (1963). 

(b) a residual attenuation having a temperature 
dependence similar to that for longitudinal waves. 

(3) A theoretical formulation was made which used 
approximations expected to be valid near the transition 
temperature. This theory employed a self-consistent 
treatment of the electron-impurity collisions and quali
tatively reproduced the features of the experimental 
data. 

(4) It was found that the specific details of the data 
could be predicted by this theory when the function 
2/(e) was used for the normal electron density. 

(5) In particular the residual attenuation was shown 
to be g[2/(e)], and the width of the region of rapid-
falling attenuation was shown to be determined by cor. 
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dense gases. At the present time, it appears that all 
methods of derivation lead to the same result, albeit 
in different mathematical forms.3-9'17 In a form derived 
by the author,3 this operator may be written 

1^ je12ZS(123)-S(12)S(23)~S(12)S(13)+S(12)'] 

X/(l)/(2)/(3)<*(2)<*(3), (I) 

where 1, 2, etc., are abbreviations for the momentum 
and configuration pi, Xi; p2, x2 of particles 1, 2, etc., 
•5(123), 5(12) are the substitution operators which 
have been denned for instance in Ref. 10, and will be 

13 S. Ono and T. Shizume, J. Phys. Soc, Japan 18, 29 (1963). 
14 R. Zwanzig, Phys. Rev. 129, 486 (1963). 
16 J. Weinstock, Phys. Rev. 132, 470 (1963). 
16 G. Sandri, Ann. Phys. (N.Y.) 24, 332, 380 (1963). 
17 P. Resibois (private communication). 
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A new form is given for the triple-collision term in the generalized Boltzmann equation which is more 
similar to the well-known binary-collision expression than those given heretofore. The form involved is a sur
face integral over a five-collision parameter space which is the generalization of the two-dimensional collision 
parameter space for binary collisions. For "soft" repulsive interactions, the expression involves both the 
asymptotic properties of three-body collisions before and after the collision, and the dynamics of binary col
lisions during the collision process. For hard spheres, the expression involves only the asymptotic properties 
of ternary and binary collisions. 


